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PREFACE

This report is an edited version of the dissertation submitted by Terry L. Fore-
man in partial fulfillment of the requirements for a Ph.D. degree in physics at The
University of Texas at Austin. Portions of this work have been submitted for pub-
lication in the Journal of the Acoustical Society of America. This effort was sup-
ported by the Office of Naval Research through Contracts N00014-80-C-0490 and
N00014-87-K-0346.
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I. INTRODUCTION

Geometrical ray theory propagation models have consistently been among the
most versatile and frequently used instruments of analysis in the underwater acous-
tician's inventory. The popularity of these models derives in part from certain com-
putational advantages, particularly the ability to treat range dependent ocean envi-
ronments and broadband sources with relative ease. But the success of the models is
explained at least as much by their appeal to physical intuition-the easily concep-
tualized representation of the acoustic field by interacting rays of energy. Decades
of experience with ray theory have brought a sense of familiarity with rays and how
they behave. The behavior of the acoustic field in a complicated ocean environment
can often be understood by studying a ray diagram, which may reveal the locations
of convergence zones and shadow zones, regions where bottom interaction is impor-
tant or unimportant, ducts where sound can propagate long distances with little
attenuation, and myriad other details of the acoustical scene. Despite its well known
shortcomings at treating caustics, bottom interaction, and weakly ducted propaga-
tion, ray theory provides much of the conceptual framework on which ideas about
acoustic propagation are based. Physical intuition about the nature and behavior of
rays has become quite ingrained.

Ray theory is at its best when used to track propagating discontinuities from
impulsive sources. It is unsurpassed at computing arrival times and angles and am-
plitudes of disturbances as they advance into a quiescent medium. It is also quite
good at high frequency acoustic field predictions for time harmonic sources, particu-
larly when propagation distances are short. These have been the traditional domains
of ray theory application. In recent years ray theory has been used increasingly to
model long range, low frequency propagation, sometimes even in shallow water, and
its weaknesses have begun to show. Yet the computational power and convenience
of ray models and the insight they provide encourage their use even under these less
than favorable circumstances.

The Helmholtz equation accurately describes the acoustic field in the farfield of
a low frequency time harmonic source. The application of classical ray theory to the
Helmholtz equation is based on a well known approximation. This dissertation is a
study of an idealized ray theory in which the approximation has been circumvented.
When the acoustic field can be computed accurately by some independent means, it
then becomes possible to trace out the rays which would have resulted had the ray
theory approximation not been made. The resulting exact ray diagrams provide new
insight into the behavior of the acoustic field, and into the nature of classical ray
theory and the ray theory approximation. This new ray theory therefore serves, not
as a computational method, but as a new method for representing and displaying the
acoustic field.

But the surprising outcome of numerical experiments is that exact ray diagrams
bear little resemblance to their classical counterparts, even at high frequencies. Some

'U / l~ ik tmm i l i l' idi dl l ' l~ bmiai d~k .... .. " .... d .. .
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of the more significant differences are the following. (1) The ray path trajectories
depend on the source frequency and configuration, and on the boundaries or radiation
conditions. This is consistent with a geometrical representation of the solution to the
Helmholtz equation, which is an elliptical partial differential equation. (2) The exact
rays intrude into shadow zones impenetrable by classical rays. The infiltration of
shadow zones is accomplished naturally, as a consequence of the fact that the field in
the shadow zone, though small, is not nonexistent; the rays do not take on complex
parameters in order to reach the shadow zone, as in some modified classical ray
theories. (3) Exact ray theory predicts finite fields at caustics. (4) Last, and most
significant, the exact rays never exhibit the multipathing which is the hallmark of
classical ray theory. This item is closely related to the third. If it were possible
for the exact rays to cross each other at all then there would inevitably be formed
limiting surfaces-envelopes to the rays-where the rays cross tangentially. On these
surfaces the ray tubes would pinch off and the transport equation would then predict
nonphysical singularities in the acoustic field.

The development of exact ray theory begins in the next chapter with a brief
derivation of the linear equations of oceanic acoustic wave propagation, primarily to
establish the notation and conventions used in underwater acoustics and to identify
the assumptions, simplifications, and approximations which underlie the work to
follow. Since none of this material is really new, it seems appropriate to expedite the
development by employing the somewhat abstract Lagrangian formalism for classical
fields, as recommended by Morse and Feshbach,[1] to efficiently recapitulate and
consolidate results obtained earlier by a more lengthy physical analysis. (Boyles'
first chapter contains a comprehensive development.[21)

Chapter III contains a development and reassessment of classical ray theory which
leads to the formulation of an exact ray theory. Hints begin to appear that the ray
theory approximation, far from being an innocuous approximation of a small pertur-
bative nature, is actually a quite drastic assumption. To invoke this approximation
is to completely change the character of the ray paths.

A computational method is presented in Chapter IV which enables one to trace
rays without resort to the ray theory approximation, provided a solution to the
Helmholtz equation is already available. In other words, given a solution to the
Helmholtz equation, the exact rays for that case can be computed parasitically. The
remainder of Chapter IV is devoted to the exploration of the behavior of exact rays.
Ray diagrams are constructed for several cases and contrasted with the classical ray
diagrams. Here the consequences of the ray approximation become apparent. The
differences between classical and exact ray theory are quite remarkable and much of
the chapter is devoted to explaining the differences.



II. OCEANIC ACOUSTIC WAVE PROPAGATION

We seek equations which describe acoustic propagation in a compressible, station-
ary fluid. This is to be accomplished by determining a Lagrangian density for the
fluid such that, when the time integral of the total Lagrangian is minimized according
to Hamilton's principle, the equations of motion result. After imposing simplifying
assumptions and approximations appropriate to the requirements of this dissertation,
these equations will turn out to take the form of linear, scalar wave equations and
Helmholtz equations.

* A. THE LAGRANGIAN DENSITY

The Lagrangian density £ of a conservative system is the kinetic potential T - V,
where 7 is the kinetic energy density and V the potential energy density. In the small
signal approximation, the kinetic energy density of the fluid is simply

T = p0 v-v, (2-1)

*. where p0 is the ambient density of the undisturbed fluid and v is the particl, velocity
of an element of fluid, or fluid particle.

Finding the potential energy density is slightly more complicated. In order to
proceed we use the fact that acoustic disturbances are perturbations of the medium
from its undisturbed state. Accordingly, we express the total pressure p' as the sum
of the ambient pressure P0 and the excess pressure p due to the acoustic pert1rbation:

p'(r, t) = po(r) + p(r, t);

but (in a somewhat inconsistent notation) we write the total density p in terms of
the ambient density and the fractional change in density, a, due to the acoustic
disturbance:

p(r, t) = po(r)[1 + a(r, t)]. (2-2)

(We are now following Morse and Feshbach,[1] pp. 307-309.) When we si)eak of an
acoustic disturbance it is understood that a < 1 and that the acoustic pr'ssurc is
much smaller than the bulk modulus (p < poc2 ). Notice that the ambient pressure
and density, as written, may depend on position r but not on time t. We are as-
suming a stationary medium for the purposes of this dissertation without claiming
that temporal fluctuations are unimportant. In fact, the effects of fluctuatiolis of the
medium on acoustic propagation are a very active area of research.[3,4]

The potential energy stored in an infinitesimal volume of fluid is e(ial to the
work done to compress the fluid from its original volume V0 to its actual volume

0t- AV. Thus the potential energy density V of the fluid is given by

V=- lim 1 1- dV
V0_ O v V
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As the fluid is being compressed its volume decreases approximately according to
V = V0(1 - a). With a change of integration variable the expression for the potential
energy becomes

V = jpdda.

Evidently we need the equation of state which governs the dependence of excess
pressure on density in order to proceed. For most fluids, including seawater, the
excess pressure is proportional to the fractional change in density in the small signal
approximation:

p = pOC2 a,

where c is the speed of sound in the fluid. Then, with another change of integration
variable, we finally obtain

V= dp

p 2
- 2  (2-3)

2poC2

as an expression for the the potential energy density.
With expressions (2-1) and (2-3) in hand for the kinetic and potential energy

densities, we can write down a tentative form for the Lagrangian density:

C=T-V

But this Lagrangian contains four field variables: the pressure p, and the three
components of the particle velocity vector v. The equations of motion for this system
would be an unwieldy set of coupled vectc, equations.

We must pare down the number of field variables. Toward that end, if we neglect
vorticity then we may introduce a scalar velocity potential 0 such that

v(r, t) = Vt, (2-4)

and thereby replace the vector field v with the scalar ip. This approximation is almost
always valid in underwater acoustics. Moreover, Lighthill[5] points out that, in linear
theory, v = VO' is the irrotational part of the total velocity field and does not interact
with any steady rotational flow field. We will make the further assumption that there
is no steady flow field. This approximation is usually well justified in underwater
acoustics, where typical current and eddy flow speeds are - 1 m/s, while the sound
speed has a nominal value of 1500 m/s.

With the velocity potential thus defined, the Lagrangian density becomes

IC (~vvVv) P,(2-5)2= Poe-V t° 2 ,

: hk



which still contains two field variables, namely ik and p. We will eliminate p in favor
of 0, although some researchers prefer to work with the pressure and hence do the
opposite. In the absence of viscosity and external forces, the pressure and particle
velocity are related by (see Morse and Feshbach,[1 pp. 151-160, 308)

av
T= -Vp. (2-6)

By equating gradients in Eq. (2-6) and the time derivative of Eq. (2-4), we see that

P = -Po (2-7)at
to within a constant, which is set to zero. The Lagrangian (2-5) can nov.' be written
in the desired form

0[ 2 = V,.Va_ 1 - (2-8)

with 0/ as the only remaining field variable.

B. THE ACOUSTIC WAVE EQUATION

According to Hamilton's principle for a conservative system, the system will
move so that the time average of the kinetic potential is an extremum (usually
a minimum). The equations of motion which satisfy Hamilton's principle are the
Euler-Lagrange equations. We are now prepared to generate a wave equation by
substituting the Lagrangian density (2-8) in the Euler-Lagrange equation

d ( aC d ( 0,C 0,C
~ at //

The Lagrangian is to be regarded as an explicit function of time, the coordinates, the
field variable, and the derivatives of the field variable with respect to time and the
coordinates: C = £(t, x,, 4', a0'/at, Oa4/Ox). The summation convention on repeated
indices is assumed, so that, for example, the particle velocity can be expressed as

v = V

=, k + e I+ e.!x a f ay a
0

and V2  can be written as a2 tV/axjax. In this notation the Lagrangian (2-8) takes
the form

, _ . . . . ... . _ : ', ." ". ; '- : . : "; .PO.
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Then the equation of motion turns out to be

0 d(aC d ( aC aC
dt Wa(i Ti

C2 & O1ix + xj

_o a j poa c' Ot )

or V ap0. o =0 1 020

P0P+at ~ - 22 at5at2x(xox PO Pox ax, C2a
or

v2o + =p 2I

Po 2 at2 ' 
(2-9)

which is the desired wave equation. Because of the presence of the density gradient
term, Eq. (2-9) will be referred to as the modified wave equation.1

C. THE HELMHOL1 Z EQUATION

The Fourier transform 41(r, w) of 0(r, t) is defined by

1 00.
IP d==f ewt.

Because the modified wave equation (2-9) is linear, TI will satisfy the Fourier trans-
form of Eq. (2-9), namely

V2'P + NP-.vP + k2' = 0, (2-10)
Po

which is the modified Helmholtz equation. The wave number k is defined by
k= ,

c
Yquation (2-10) can be rendered in a more familiar form which lacks the density

gradient term by defining a new field variable:

q 1/2- (2-11)

After substituting the expression (2-11) for q in Eq. (2-10) we get the Helmholtz
equation

2

V 2q + K2 q = 0, (2-12)

'One might object Lhat the derivation of Eq. (2-9) is inconsistent in that external forces, here
neglected, must be present in order to create a density gradient. Indeed, if the external force F is ob-
tained from a potential V by F = -VV, then Eq. (2-7) should be modified to p = -(poOV/Ot+ V).
But it is easily verified that, for time independent forces, the resulting extra terms in the Lagrangian
density have no effect on the wave equation.

2 Universal agreement on equation names is lacking, as usual. The Helmholtz equation (2-12)
is also called the reduced wave equation. Morse and Feshbach, whose development we had been
following, would call Eq. (2-12) a lelmholtz equation if ic were a constant, and a (time independent)
Schrodinger equation otherwise. The distinction is crucial to their cataloging of the coordinate
systems in which the lelmholtz equation (in their sense) is separable. That, distinction is irrelevant
here and we refer to Eq. (2-12) as a llelmholtz equation because it has the right form.
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wherewhere 2 2 1 Vo Vpo I V2 po

4 po po 2 Po

However, it is rarely necessary in practical applications to make this transfor-
mation; the density gradient term in Eq. (2-10) can usually be ignored. Rutherford
and Hawker[6] investigated the sensitivity to variations in the density gradient of
solutions to the depth separated modified Helmholtz equation

d1u U 1 dpo du_+ __ + (k' - -t2)u = 0, (2-13)
dz 2  po dz dz

where -2 is the separation constant. They conducted the sensitivity study for various
sediment layers underlying the ocean bottom and found that solutions to Eq. (2-13)
were quite insensitive to the details of the density profile within sediment layers; they
were, however, sensitive to the ratios of the densities of two sediment layers at their
common interface. Thus they determined that the density gradient term could be
dropped from Eq. (2-13) provided that the correct density ratios at interfaces were
retained. Moreover, typical density gradients in the sediments often exceed those
in the water by an order of magnitude; if the density gradient term is ignorable in
sediments then a fortiori it is ignorable in the water column.

1. Sources and boundary conditions

We will only be concerned with point, time harmonic sources with time de-
pendence ei. Usually, we will be concerned with finding the Green function 'IG
which satisfies the inhornogeneous modified Helmholtz equation

V 2 'PG + k1 = -b(r - ro)

for a source located at ro.
At propagation ranges many times the depth of the ocean, acoustic energy is

effectively trapped in the channel formed by the surface and bottom of the ocean, and
the ocean begins to take on the properties of a waveguide. As is often the case with
propagation in a waveguide, rough periodicities in the acoustic field are frequently
evident. Cycle distances of 50 km or so are typical. Sound waves are refracted by
inhomogeneities in the medium, and the energy propagation paths predicted by ray
theory become very complicated at ranges beyond a cycle distance. Failures of the
ray theory approximation begin to manifest at ranges beyond a cycle distance and
at frequencies low enough (below 5000 Hz) to propagate to such distances without
being completely absorbed.

The focus of this investigation is on the exact ray theory developed in Chap-
ters III and IV rather than the problems of modeling acoustic propagation in difficult
ocean environments. It is desirable to illustrate the theory using the simplest possible
idcalizations of the oceanic waveguide. With this in mind, the simplified boundary
and radiation conditions described below will usually suffice.
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The atmosphere above the sea surface is so tenuous compared to the water
that very little acoustic energy passes from the water into the air. It is sufficient to
idealize the air-water interface as a planar pressure release perfect reflector at which
the acoustic field vanishes. One should note, however, that considerable research is
underway on the effects of scattering from surface waves and polar ice caps.

Similarly, even though acoustic interaction with the ocean bottom is also
an important area of research, it suffices here to treat the bottom as a plane lying
parallel to the surface.

The acoustic field is considered to consist entirely of outgoing waves. In a
horizontally stratified waveguide this leads to the requirement that the acoustic field
satisfy the Sommerfeld radiation condition

in cylindrical coordinates where r is horizontal range along the waveguide and z is
depth below the surface. _

2. Attenuation

It is convenient to define a complex velocity potential v for a time harmonic
source by

* lIe-iwt (2-14)

where

ik=Rev. (2-15) o

It can be shown by substitution that v satisfies the acoustic wave equation (2-9) for
sources with time dependence e"t. Moreover, V also satisfies the modified Helmholtz
equation:

+ V'P0-Vv + k 2V = 0; (2-16)
PO

in fact, the modified Helmholtz equation can be derived by substituting v in the
modified wave equation.

We now exploit the property of the Lagrange formulation of classical fields
that all Lagrangian densities which generate the same equations of motion are equiv-
alent 3 (though not all Lagrangians have the same physical content). Here, a La-
grangian density which generates the modified Helmholtz equation (2-16) is

C = po(VV0.VV - k2W(P*), (2-17)

3 Actually, this statement is strictly true only when the Lagrangian is invariant to coordinate
transformations. We avoid these complications by staying with Cartesian coordinates while working
out the Euler-Lagrange equations. Once the equations of motion have been derived they can be
rewritten for any desired coordinate system.

I.-
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where there are now two independent field variables, V and the conjugate field 9.
Substitution of the Lagrangian (2-17) in the Euler-Lagrange equation, with V" as
the field variable, produces the modified Helmholtz equation

V2 + Vpo -VV + k2V = 0.

P0

Similarly, the Euler-Lagrange equation with respect to V is

VpoV 2 W + -- VV" + k2 ,? = 0,
P0

and the conjugate field V" is thus seen also to satisfy the modified Helmholtz equation.
Only for conservative systems will the Lagrange function density take the

form T - V. Having thus excluded dissipative mechanisms at the outset of our
development by using the Lagrangian formulation, we will now readmit them by a
subterfuge. The trick is to add an extra term to the Lagrangian (2-17):

=P [VW-V* - k2W* + a V

which will cause the conjugate field V* to gain in amplitude as rapidly as the field V
attenuates, thereby preserving the total energy of the system as a constant and thus
permitting the continued use of the Lagrangian formulation (it is understood that
these gains and losses take place in space, not time). The Euler-Lagrange equations
are

V2p + EoVW + PV - a - = 0 (2-18)

and

V2v( + VPO.Vv* + k2V* + - 0. (2-19)
P0oa

Since Vp = 'e - "t , the field equations (2-18) and (2-19) become

V2q% + ±P V* + (k 2 + iaw)* = 0 (2-20)

P0

and

V2 * + P.V + (k' - iaw)r - 0, (2-21)
Po

now in terms of qV and V" again. Only the solution to Eq. (2-20) is of direct physical
interest, for * will suffer the desired attenuation while *', the solution to Eq. (2-21),
will grow to compensate.

Morse and Feshbach recommend this ad hoe device for introducing dissipation
into the Lagrangian only when the loss mechanisms are not well understood. The
mechavisms of attenuation in the occan are actually understood reasonably well[7)

I ",
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but are also rather complicated; to treat them thoroughly would take us too far
afield. Instead we embrace equation (2-20), which is commonly modified to

V2 * + Vpo + (k + ia) 2*I = 0 (2-22)
Po

(valid for a < k, with a = lac), as a successful phenomenological model of time
harmonic propagation in a slightly lossy ocean. The attenuation a(r,w) is usually
determined empirically and incorporates the effects of thermoviscous and relaxation
loss mechanisms (absorption) as well as bulk scattering losses. It has dimensions of
nepers per unit length.

The remainder of this dissertation is chiefly concerned with constructing exact
ray diagrams for various solutions to the lossy modified Helmholtz equation (2-22)
and with using exact ray theory to exhibit the behavior of the acoustic field.

O.

Ir a



III. REVIEW OF RAY THEORY

This chapter begins with what is essentially the Sommerfeld development of
ray theory,[8] perhaps the simplest of several alternative derivations. Moreover, the
Sommerfeld development directly addresses the application of ray theory to the Helm-
holtz equation and it requires only one approximation, which is clearly identified. The
methodology and order of presentation given here are somewhat unconventional in
order to advance a view of classical ray acoustics as an approximation to an exact
ray theory in which the ray trajectories depend on the configuration and radiating
frequency of the time harmonic sources.1 Ray theory in the traditional vicw is the
high frequency limit of an asymptotic expansion in which the ray paths arc indepen-
dent of frequency. The two viewpoints are not incompatible and a proof of the latter
claim is also given.

A. THE RAY PATH AND TRANSPORT EQUATIONS

We will obtain the eikonal and transport equations of ray acoustics by further
manipulation of the Lagrangian, and from these we will derive the ray path equation
and an energy conservation law.

A Lagrangian density (2-17) which yields the modified Helmholtz equation in a
lossless medium was found in Sec. II.C.2 to be

C = po(VVV - p*)

which becomes
,C po(V*IV* - k2 lp) (3-1)

upon using the defining relation Vp = *e-i-'. Henceforth we will assume that the den-
sity dependence of the Helmholtz equation has been abolished, either by a change of
variables or by simply ignoring it, as discussed in Sec. II.C. Then the Lagrangian (3-1)
may be replaced by

£' =V.V - k (3-2)

as one may verify by substituting C' in the Euler-Lagrange equation and showing
that the Helmholtz equation

V2* + k2* = 0 (3-3)
is thereby recovered.

A Lagrangian density which leads to the ray theoretical formulation of the I lehn-
holtz equation is obtained by writing tl$ explicitly in terms of its real amplitude A
and phase 0:

'I' Ae' ,

'A somewhat similar theoretical development by Floyd[9] does not retain the concept. of a gco-
nmetrical energy conservation law, which is a central feature of the ray theory described here.

Z1

- t %- ,. '.4
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and substituting in the Lagrangian (3-2) to produce a new Lagrangian

- = (VA + iAV4').(VA - iAV4b) - k2A2

= VA.VA + A 2V$I*V$I - k2A 2.

When the Euler-Lagrange machinery is applied to the new Lagrangian it generates
two coupled equations for the new field variables A and 4b. One of the Euler- Lagrange
equations is

0 d (_&__&_
0=-i a R-) 8

2( 0
2 A - AV4.V0 + k 2A\

or
- k2  +.V 2AVO.VtI = ks + (3-4.

Equation (3-4) will be referred to as the exact eikonal equation in order to distinguish
it from the more familiar eikonal equation of classical ray acoustics, which will appear
later. Likewise, 40 will be called the exact eikonal.

The other Euler-Lagrange equation is

0 xi C

2 ( 2AOA a-6+ A2 a24'
=2\ o, o ox+ ax I)'

or
2- .V + V24b = 0, (3-5)

which is the transport equation.
The eikonal equation leads to an equation for the paths of acoustic energy prop-

agation, or ray paths. The transport equation leads to a geometrical energy conser-
vation law in a form useful for the calculation of the sound intensity at any point
along a ray path. The eikonal and transport equations are coupled, first order in
VA/A and V4), and nonlinear; they are entirely equivalent to the second order, lin-
ear Helmholtz equation (3-3). They may also be obtained, as in the Sommerfeld
development, by direct substitution of Ae' in the Helmholtz equation.

To bring the concept of rays into the development, first define the unit vector t
to be the outward normal to a surface of constant phase 46 at the point r, and
further define t to be the tangent vector to the ray path at r. (In some ray theories,
particularly those applicable to moving media, the ray paths are not necessarily
perpendicular to the surfaces of constant phase.) It is also convenient to define the
wave vector K by

K =V, . ..

. . . . . . . . . . . . . . . . . . . . . . .. .
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so that K = Kt. The ray path trajectory is the solution to dr/ds = t, where ds is
the element of ray path length. The exact eikonal equation then becomes

V2A
K 2 =k 2 + . (3-6)

A

The transport equation (3-5) may be expressed as a vanishing divergence:

V.(A 2K) = 0. (3-7)

B. CONSERVATION OF ENERGY

Departing slightly from the usual order of the Sommerfeld development, we will
follow up on the discussion of the transport equation before deriving the ray path
equation. The formulation of the transport equation (3-7) as a vanishing divergence
suggests applying Gauss's theorem. Accordingly, let S be the closed surface formed
by a tube of rays and the intersection of the tube with two surfaces of constant phase,
S, and S2, as shown in Fig. 3.1. Let V be the volume enclosed by S. Then by Gauss's

S,

FIGURE 3.1 CONSERVATION OF ENERGY IN RAY ACOUSTICS. THE TIME AVERAGED ENERGY FLUX

THROUGH THE SURFACE OF CONSTANT PHASE, S1, EQUALS THE FLUX THROUGH S2 .

theorem,

v V.(A 2K) dV = j A2Kn dS = 0, (3-8)

where n is the outward unit vector normal to S. The only contributions to the
integral are from the end caps SI and S 2 since K-n = 0 by definition oil the sides
of S formed by the ray tube. And since K is tangential to the ray path, then also by
definition,

{-t on SI (39)
n.. = S2 -
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Using Eq. (3-9) in Eq. (3-8) yields
0 = JA2K.n dS

f A 2 K.tdS - s A 2K 't dS,

or

A2KdS /A2KdS, (3-10)

which is the integral form of the transport equation.
The significance of Eq. (3-10) becomes apparent upon identifying iPowA2K as

the time averaged acoustic intensity, or energy flux. The intensity of a classical
field has dimensions of force per unit area times velocity. We therefore expect, by
dimensional analysis, that the instantaneous intensity J is given by

J -pv (3-11)

since pressure has units of force per unit area. (A complete derivation is given by
Boyles,[2] pp. 30-34.) The energy flux J is sometimes called the Poynting vector,
although that term is more commonly applied to the analogous electromagnetic field
intensity.

In terms of the complex velocity potential *e - iwt, the particle velocity (2-4) is

v = Re(VIe-wt) (3-12)

and the pressure (2-7) is

p = -po ReI i*-t)

= -pow mQPeiwi). (3-13)

Then, using T = Ae 4 and Eqs. (3-12) and (3-13) for v and p, the expression for the
intensity (3-11) becomes

J = powA (VO sin2  W-t)- Asin(O -wt)cos(O- wt)).

The time average of the intensity, (J), is obtained by integrating J over the period T:

(J) = l J dt,

with T = wl/2r. The integral is easily calculated and the result takes the form

(J) = 1powA K (3-14)

-1;m
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if one uses the definition VO = K. Thus the time averaged intensity is directed along
the ray path,2 although the instantaneous flux vector points in the direction of v,
which is time dependent and generally not parallel to the ray path.

In view of Eq. (3-14), the integral form of the transport equation (3-10) can be
written as

is, (J)dS = .sL (J)'dS,

which is

s(J)dS = I (J)dS. (3-15)

This is an energy conservation law in geometrical form. It states that all of the energy
flux which pa-ses through the surface S1 also passes through S2 . The existence of
such a law helps to explain the popularity and versatility of ray theory.

We have established not only that the ray paths are physically meaningful in
that they are the trajectories of energy propagation (although we have not yet seen
how to compute the trajectories), but wc also have an intuitively appealing picture
of how the intensity varies along a ray path as the ray tube expands and contracts.
The energy conservation law (3-15) also readily lends itself to computation. Ray
theory is unique in its ability to present a qualitative and informative view of energy
propagation and to permit straightforward calculation of the acoustic field.

It should be emphasized that no approximations have been made up to this
point; the geometrical energy conservation law (3-15) is not a ray theory approxi-
mation, as is sometimes stated; it does not arise from the "neglect of diffraction,"
or the "local approximation of the field by a plane wave," or any other classical
ray theory approximation. Moreover, Eqs. (3-10) and (3-15) are fully applicable to
finite sources; nothing in the development requires that the ray tubes include only
infinitesimal volumes. We will, in the next section, resort to an approximation in
order to be able to compute the ray trajectories, but this approximation is made in
the ray path equation, not the transport equation.

C. THE RAY PATH EQUATION

We have shown that there are trajectories along which sound propagates. An
equation for these paths may be obtained by computing the gradient of K2 :

K 2 = K.K;

2KVK = 2(K.V)K+2Kx(VxK).

21t can be shown (see Boyles[2]) that the result (3-14) can also be found from (J) - I Re(PV*)
for time harmonic fields, where the complex particle velocity is defined by V = V = e- i

and the complex pressure is given by P = -poio/OL = jpgw*e - i"w.
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Since VxK = VxVO = 0, this simplifies to

VK = (.v)K

= j

dK

or

d(K = VK. (3-16)

Equation (3-16) is a ray path equation; its solutions are the energy conserving ray
path trajectories described in the previous section.

It is worth reemphasizing that no approximations have yet been made; the Helm-
holtz equation has been recast in what might be termed an exact ray theoretical
formulation. The simultaneous solution of the ray path equation (3-16) and the
transport equation (3-7) would yield A and '0 and thus determine TP, the solution to
the Helmholtz equation.

The difficulty is that solving the ray path equation requires knowledge of K,
which in turn requires knowledge of A, as may be seen by examining the eikonal
equation (3-6). And, of course, the ray paths must be known in order to solve the
transport equation for A. We have come full circle. In principle, the exact eikonal and
transport equations can be solved simultaneously, for example by numerical methods,
but that will usually prove more difficult than solving the original Helmholtz equation.

Yet this "exact ray theory" nevertheless proves useful, not as a general purpose
computational procedure, but as an investigative and display technique. When the
solution to the Helmholtz equation is available by independent means then the cycle
described in the last paragraph can be broken; given the solution to the Helmholtz
equation one could compute A and then K and proceed to trace rays. (A more prac-
tical computational method for tracing exact rays is explained in the next chapter.)
Exact ray diagrams are a new alternative to propagation loss curves and inten-
sity plots as a means of displaying and analyzing the acoustic field. As we shall
see in Chapter IV, exact ray diagrams usually differ strikingly from their classical
counterparts.

The source of the difficulty with exact ray theory as a computational method
is that the eikonal and transport equations are coupled: one cannot determine K
exactly without first knowing A. In classical ray acoustics the desired decoupling
is achieved by resorting to an approximation. If V2A/A < k2 , then by neglecting
V2A/A in the eikonal equation one obtains

K ;,- k. (3-17)

This is the classical ray theory approximation; it is the only approximation required
to obtain classical ray acoustics, but it has far-reaching consequences.
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It can be shown that the ray theory approximation will fail wherever the sound
speed gradient changes significantly over a wavelength.[10] In underwater acoustics,
such rapid variations can occur at fronts where cold and warm ocean waters meet,
or when one attempts to perform low frequency ray calculations in the ocean bottom
sediments. However, the approximation is also observed to fail regularly even when
the ocean environment harbors no regions of rapid sound speed variation at all.
Regions where the acoustic field amplitude undergoes rapid spatial variations (i.e.,
where V 2A/A k2 and the approximation is invalid by definition) are simply not
always, or even often, collocated with or causally related to regions of rapid sound
speed variations. These problematical regions include the vicinity of caustics (to
be discussed at length in Chapter IV) and ocean surface ducts. Because of their
ubiquity, these regions are far more troublesome to the routine use of ray theory
than rare pathological features in the sound speed field.

Nevertheless, the ray theory approximation does decouple the eikonal and trans-
port equations and thus removes the dependence of K on A. The ray path equa-
tion (3-16) then becomes d r

7 s =vk.

Since k is a known function of the frequency and sound speed one can solve the ray
path equation and trace rays at will.

If we define an index of refraction n in terms of a constant reference sound
speed' Co:

n = co/c,

then k = wn/co and the ray path equation becomes

d(n = V, (3-18)

which is perhaps the most familiar form of the classical ray path equation. In the
ray theory approximation the transport equation becomes

V. An d 0,

and is generally restricted to infinitesimal ray tubes for reasons which will become
apparent later.

Most fluids, including seawater, are only very slightly dispersive; that is, the
dependence of c or n on w is negligible for our purposes. The classical ray paths,
which are solutions to Eq. (3-18), are consequently independent of frequency.4

'The natural choice for the value of co in optics is the speed of light in a vacuum. There is no
analogous preferred reference sound speed in acoustics and many workers simply use I/c, sometimes
called the "slowness," in place of n.

4When attenuation is taken into consideration the wave number k or, equivalently, the sound
speed takes on a small imaginary part which is frequency dependent. A lossy medium is therefore
also a dispersive medium.
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By contrast, K is a complicated function of frequency because of its dependence
on A, which is sensitive to frequency. The ray trajectories which are solutions to

the exact ray path equation (3-16), and which are the paths of acoustic energy
propagation, are inherently frequency dependent. We generally expect dispersion in
an inhomogeneous medium even if the sound speed itself is not an explicit function
of frequency.

D. THE TREATMENT OF ATTENUATION IN RAY THEORY

Let us see how the inclusion of attenuation modifies the ray theory analysis
presented earlier for lossless media. It was shown in Sec. II.C.2 that, for a source
with time dependence e-iwt, one may account for the effects of attenuation to first

order by adding a small imaginary part to k; that is, k --- k + ia. Accordingly, we will
seek a first order perturbative solution to the lossy Helmholtz equation by expanding
about the solution to the lossless equation in the small parameter a, with ' as an
ordering parameter.

Let To = Ae" denote the solution to the lossless Helmholtz equation V2 I 0 +
k2 I0

= 0 (recall that A and b are real). The lossy Helmholtz equation is written as

V 2 ' + (k + ia) 2%I = 0, (3-19)

and the solution proposed for it as

P= 0e-' . (3-20)

The factor e-'# accounts for the expected spatial damping of the field amplitude; it
was written in this form in anticipation of finding that # = f ads, which gives the

usual path integral correction for attenuation in ray theory.
After substituting the expression (3-20) for * in Eq. (3-19) and linearizing in f,

one obtains

V2 
0 + k 2 %p0

- C#(V 2 0 + k2TO) + 2V*o.VP + I0V 2 # - 2i oak] = 0.

The term of order c0 and the parenthetical expression in the term of order 0 simply
reaffirm the Helmholtz equation and vanish identically, leaving

2VI'o-'V#/ + 'IoV 2/3 = 2iqoak. (3-21)

But
VPO = *o + iK-

OO\A+ ds/'

which, in the ray theory approximation VA/A < k, simplifies to

dr
V*o = i*ok . (3-22)

ds
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Substitution of Eq. (3-22) for V'Io in Eq. (3-21) gives

2iks.V/V + V 2/3 = 2iak. (3-23)

Since all of the variables in Eq. (3-23) are explicitly real, the real and imaginary
parts of Eq. (3-23) must vanish separately, leaving a pair of coupled equations:

V 2/,3 = 0, (3-24)

and 
dr.V/ = a. (3-25)
ds

By using the operator identity dr/ds.V = dIds, Eq. (3-25) can be written as

d/3
ds= a,

or, upon integrating with respect to path length,

= a ds'. (3-26)

It is standard practice in ray calculations to treat attenuation by applying the formula

where/3 is given by the path integral (3-26). Such path integrals are easy to compute
numerically.

Equation (3-24) is essentially an assertion that /3 is slowly varying. This asser-
tion is well justified in the ray theory approximation and in view of the path integral
formulation (3-26) for /3.

A similar analysis which does not invoke the ray theory approximation leads
to path integral corrections for both the amplitude and phase. Nevertheless, the
corrections still take the form of integrals over the exact ray paths of the lossless
Helmholtz equation. We will henceforth treat only the lossless Helmholtz equation
since corrections for attenuation are easily computed and do not alter the exact ray
paths (at least to first order).

E. REMARKS ON THE NATURE OF CLASSICAL RAY ACOUSTICS

It was shown in the preceding section that classical ray acoustics can provide only
approximate solutions to the Helmholtz equation. The nature of the approximation
is explored further in this section, where it is shown that classical ray acoustics is the
high frequency limit of a nonuniform asymptotic expansion in which the ray paths are
independent of frequency. Classical ray acoustics can also provide exact solutions to
an important class of problems related to propagating discontinuities in the acoustic
field.
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1. Propagating discontinuities in the acoustic field

Consider an iiihomogeneous quiescent medium which is suddenly disturbed
by activating a point source, not necessarily time harmonic. We ask how much time
must elapse before the disturbance can reach a distant observation point. Since the
rate of propagation of the disturbance at any point in the medium is equal to the
local speed of sound (or else what does "sound speed" mean for small signals in a
medium at rest?), then the minimum travel time tri,, must be given by the path
integral

tnun. =

S(dx* 2 + dy 2 + dz2 )1/2

J c(X, y, z)
f (dx/ds )2 + (dyds)2 + (dz/ds)21/ 2d

Jc(X, Y, Z) )

(X 0 + /2+ 212d

c(x,) ds, (3-27)

where primes denote differentiation with respect to path length along a trajectory
yet to be determined. Application of the variational calculus reveals that the path
itself is the solution to[11,12]

s (V, = i 0, (3-28)

where
F = .t-

c(xi) (3-29)

Upon substituting Eq. (3-29) for F in Eq. (3-28) and using the auxiliary condition
xx' = 1, the path turns out to satisfy the classical ray path equation

d (dr) = V (1D
In other words, no disturbance can reach the observation point due to the activity
of the source before a minimum amount of time t,,i,, has elapsed, where t,,,i,, is given
by the classical ray path integral (3-27).1

'Nevertheless, propagation times apparently indicative of supersonic transmission speeds do oc-
cur occasionally even in linear theory, particularly during attempts to construct synthetic time series
by Fourier synthesis of solutions to the lossy lelmholtz equation. The problem usually is due either

- " m, n~~ ua m n u nllnnnllmlllnlnlll I1' I II lll tll~
n in

u aa . .. " " - ... ... .......
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The preceding argument, though inspired by Fermat's principle and Hamil-
ton's principle of least action, makes iLo reference to physical processes (in particular,
the wave equation was never invoked); hence, it gives no assurance that any acous-
tical energy will actually flow along the classical ray paths and arrive at the times
predicited by ray theory. Nevertheless, it does serve to establish a lower bound on
transmission times. But there is a considerable body of literature, going back at
least to Christoffel[15] in 1877, which shows that a surface across which the time
derivatives of the acoustic field are discontinuous propagates according to the clas-
sical eikonal equation. Luneburg[16] obtained a similar result for electromagnetic
propagation. Heller[17 obtained a generalized eikonal which allows for movement of
the fluid medium. And Keller[18] showed that the transport equation governs the
amplitudes of propagating discontinuities. The conclusion to be drawn from this is
that classical ray theory is essentially a broadband theory best suited to the analysis
of propagating fronts generated by pulsive sources.

2. Ray theory as a high frequency approximation

We seek an asymptotic solution of the Helmholtz equation for high frequencies
by expanding in the small quantity 11w. Referring to the Sommerfeld representation
of the acoustic field, TP = Ae , we express the exact eikonal as

4) = wtr(r), (3-30)

while the amplitude is written as an asymptotic series:

A (- ) a,,. (3-31)
n=O W

Note that r, which will determine the ray trajectories, is independent of frequency.
After substituting for T in the Helmholtz equation, which is written in the form

+ = 0,

one obtains

eiwA -[AVn.VT )

+ i(2VA,.Vr + Anv2r)+ -V2A,] =0. (3-32)

cal analog of the Kramers-Kronig relations,[13,14] or to a failure of a saddle point approximation
or other approximation method used to estimate group velocities. Either condition can result in
predictions of spurious precursors to the earliest arrival predicted by ray theory. Fortunately, the
intensities predicted for these premature arrivals are usually low enough that they can be tolerated
without requiring corrective measures. Sometimes these acausal precursors are erroneously accepted
at face value and attributed to mysterious "diffracted energy paths."
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Since Eq. (3-32) is an identity in 11w, the coefficients of each power of 11w must
vanish independently. At lowest order in 1/w we recover the eikonal equation

Vr-Vr =

while the first order equation turns out to be the transport equation

2VAo-Vr + A 0 V 2r =0.

Thus classical ray acoustics is established as the asymptotic solution to the Hlelmholtz
equation in the high frequency limit.

The remaining terms in Eq. (3-32) can be consolidated in like powers of 1/w
and written in the form

00 )n-} (2VAn+,.Vr + An+, V 2 r - V2An) = 0,
n=O (W3/

which establishes the recursion relation

2VAn+ 1 .Vr + An+IV 2r = V2An (3-33)

for the higher order terms in the asymptotic expansion. Note, though, that these
terms affect only the amplitude A and not the ray paths, which are independent of
frequency. The infinitesimal ray tube cross sections are not prevented from vanish-
ing at caustics; hence, this perturbative treatment continues to predict nonphysical
singular acoustic fields at caustics to any order in the expansion. The expansion is
thus seen to be nonuniform when caustics are present.

Equation (3-33) would seem to offer a means of obtaining improved ray theory
calculations by iteration, at least in regions free of caustics. The ray paths and the
surfaces of constant phase form an orthogonal coordinate system. Pitre[19] points
out that Eq. (3--33) can be rendered as an inhomogeneous transport equation in ray
coordinates, and then converted into a ray path integral to be evaluated numerically.
Chen and Ludwig[20] exploited this procedure to evaluate the importance of ray
theory corrections.

However, the iterative correction scheme has liabilities as a practical com-
putational procedure. The use of ray coordinates is not the problem; ray theory
computer models which compute the rate of geometrical ray path spreading already
have the information necessary to compute the Jacobian of the transformation from,
say, cylindrical coordinates to ray coordinates. But V2A, is not readily available and,
in any case, the corrections are of dubious value even when they can be generated.
The corrections are negligible far from caustics at the frequencies of interest in long
range propagation. But if caustics are present then the corrections permit one to
approach the caustic only a little more closely before the ray approximation fails; no
amount of iteration will remove the singularity at the caustic or substantially improve
the calculations near it. A glance ahead at the propagation loss curves of Fig. 4.5 on

.... r ........ - " ' "--' .,1. ' .' ..'. =tm' wlalaiili/liii i ll ;= " •
.. . . ''- : . .. i I
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page 37 will make this point clearer. Figure 4.5 is a comparison of the propagation
loss computed using ray theory and also using Ludwig's uniform asymptotic formula,
which is valid on and near the caustic. The ray theory propagation loss curves are
indistinguishable from the uniform asymptotic propagation loss curves right up to
the caustic, where ray theory becomes singular. The ray theory corrections offered
by Eq. (3-33) are unnecessary far from the caustic and of little use near it.

frt



IV. ILLUSTRATIVE APPLICATIONS OF EXACT RAY THEORY

Several derivations of classical ray theory were presented in the preceding
chapter, and it was hinted that if the ray theory approximation were avoided then
the resulting rays would be quite different. This chapter begins with the development
of a simple computational procedure for numerically constructing exact ray diagrams
whenever a solution to the Helmholtz equation is available. The remainder of the
chapter is given over to demonstrations of the method.

A. A COMPUTATIONAL PROCEDURE FOR TRACING EXACT RAYS

Whenever a solution to the Helmholtz equation is known, it is possible to de-
termine what the ray path trajectories would be if the ray theory approximation is
not invoked. To see how this comes about, let us suppose that a solution 'P to the
Helmholtz equation is known for some particular source configuration and wave num-
ber k(r) in a lossless medium. After computing the gradient of the defining equation
for A and I, namely 'k = Ae i , one obtains

VP= VA+ iK.
'P A

Since A and K = V are real, evidently

VA -Re-R e,

and

Ks = Im . (4-1)

The latter is a first order differential equation for the ray path. It is desirable for
computational reasons to eliminate K from the ray path equation by defining a new
path parameter a such that K da = ds. Then Eq. (4-1) becomes

dr Im . (4-2)

One traccs a ray by integrating Eq. (4-2), usually by numerical methods.
The equivalence of the first order ray path equation (4-1) and the second order

equation (3-16) can easily be verified by substituting Ae' for * in Eq. (4-1). One
recovers the defining equation for the ray path tangent vector, Kdr/ds = V4, from
which Eq. (3-16) was derived.

One can also calculate K by

K = Im (-) , (4-3)

25 I.e

7...
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which result is achieved by computing K-K using Eq. (4-1). Also available is the
amplitude A, by way of A2 = *.

That the ray path equation (4-2) is a first order differential equation has several
remarkable consequences, two having to do with the computational process of solving
ray path equations, or tracing rays, and another having to do with the qualitative
behavior of the paths themselves. Only one initial condition is required in order to
solve a first order differential equation, while a second order equation requires two
initial or boundary conditions for its solution. To trace a classical ray one must solve
the second order ray equation (3-18), which usually means that the ray trace must
begin at the source (although the source need not be a point; it may be a surface),
because only at the source are both the initial position and direction of the ray
known. By contrast, given any starting point, the starting direction of an exact ray
at that point is given by Eq. (4-2) because it is first order. Hence, an exact ray trace
may commence anywhere.

Another useful consequence of the exact ray equation being first order is that
eigenrays for arbitrary points can often be found by tracing the ray backwards from
an observation point to the source. This is accomplished by requiring the numerical
integrator to solve Eq. (4-2) for decreasing, rather than increasing, values of a. The
resulting ray trace will proceed from the observation point right back to the source.

The above should not be construed to mean that exact ray theory is a computa-
tional tool superior to classical ray theory. On the contrary, classical ray theory can
generate approximate solutions to the Helmholtz equation ab initio, whereas exact
ray tracing requires that a solution already be known. Nevertheless, the facility with
which exact rays can be traced forwards or backwards from any starting position
makes exact ray theory a versatile and illuminating alternative means of displaying
and analyzing the acoustic field.

As promised earlier, we can also glean an insight into the qualitative behavior of
exact rays from the fact that the ray path equation is first order. Since the particle
velocity is a measurable quantity and must therefore be single valued at any position
r, and since the velocity potential satisfies the acoustic Helmholtz equation, it follows
that the velocity potential is single valued and twice differentiable. Hence, the right
hand side of Eq. (4-2) is single valued at r. But this self-evident and seemingly
innocuous observation means that the vector dr/da tangent to the ray path is unique,
which in turn forces us to conclude that only one ray passes through each point r.
There is exactly one eigenray from a source to an observation point. The uniqueness
of exact eigenrays stands in stark contrast to classical rays, which characteristically r
exhibit multipathing. This is an important realization and a source of considerable
confusion; we will return to it several times.

The remainder of this chapter is devoted to demonstrations of exact ray analysis.
Each case selected for analysis was chosen quite frankly for its pedagogical value by
the following criteria: (1) Each case should serve as a canonical example of some
problem frequently encountered in acoustics. For example, the Kormilitsin problem
has as its dominant feature a smooth, convex caustic. The "harmonic oscillator"
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waveguide was selected as a model of propagation in a duct. The circular piston is
famous for its diffraction patterns, and so on. (2) Cases with published solutions are
preferred, so that many readers will already be familiar with the problem. The intent
is to maintain the focus on the exact ray theory developed here, and demonstrations
of the theory are muc. more comprehensible when applied to familiar problems.
(3) Each case has an exact analytic solution or a good approximate solution suitable
for computation. Numerical solutions of the Helmholtz equation are avoided. This
gives assurance that any unexpected behavior of the rays is in fact valid and cannot
be attributed to the vagaries of numerical computation. To be sure, a Runge-Kutta-
Fehlberg[21] numerical integration code is used to integrate the ray path equation,
but many years of experience with numerical ray tracing have proven this procedure
to be very reliable.[221 -[24] Acoustic propagation in realistic ocean environments is
an extremely complicated process; sophisticated numerical computer models often
must be used to obtain reasonably accurate simulations. To bring such models into
play in all their complexity, while simultaneously trying to establish the fundamental
properties of exact ray theory, would be an intolerable distraction for the purposes Uf
this dissertation. Instead, we treat only cases where the acoustic field has reasonably
simple behavior. This does not mean, however, that exact ray analysis is limited to
"pencil and paper" problems. Some numerical propagation models can be modified
to compute the acoustic field gradients as well as the field itself and to save them for
use by a ray trace program. Such models would then be able to predict not only the
amplitude of the acoustic field but also its direction of propagation.

There are two stages to the construction of the exact ray diagrams which follow.
First, the Helmholtz equation is solved and the gradients of the acoustic field are
computed, all by analytical methods. Then the ray path equation dr/dr = Im VIP/T
is solved, usually by numerical integration. Since the solution to the Helmholtz
equation is different for each case and usually rather complicated, the reader will
find that somewhat lengthy and perhaps tedious mathematical preliminaries precede
the generation of each ray diagram. I have tried to minimize the distraction of these
mathematical excursions by simply providing a reference if a suitable solution has
been published. There would be little point in reproducing solutions to problems
selected in part because their solutions appear in the literature. Otherwise, I have
tried to provide sufficient details of the development to allow reconstruction of the
result without belaboring the derivation. For the most part, this material can be
skimmed with little loss of continuity or comprehension.

B. THE UNBOUNDED HOMOGENEOUS MEDIUM CASE

As a simple demonstration of exact ray theory analysis we confirm that the exact
ray trajectories are straight lines for the case of a point source in an unbounded
homogeneous medium (the classical ray paths are also straight lines, of course).

The solution to the Helmholtz equation for a point source is

=,
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where Q is the source strength, with dimensions of volume per unit time, and r is the
radial distance from the source, which is assumed to lie at the origin. Upon taking
the gradient of * and using Vr = r/r, we find that

~r"

The ray paths are solutions to Eq. (4-1):

dr (I
K-=Im -

k r PJ

r

But K = k by Eq. (4-3), so the ray path equation is

dr r
ds r

In words, the ray path tangent vector is the unit radial vector and the rays are
therefore radial lines.

C. THE LINEAR SOUND SPEED CASE

Classical ray theory provides an exact solution to the Helmholtz equation when
the sound speed is a constant. We now examine the linear sound speed profile case
c = az, where classical ray theory, with a slight modification, still yields an exact
solution. Most textbooks on underwater acoustics show that the rays for a linear
profile are circular arcs centered on the surface,[2,7,10] as shown in Fig. 4.1.

Classical ray analysis of this problem produces the approximate solution

A - 2(zzo) 1/2

RIR 2

Oray = 2- tanh -1  ) (4-4)

for the acoustic field qj - Ae , where z0 is the source depth and

R = r2 + (z -zo)2 , R = r2 + (z + zo) 2.

Pekeris[25] showed that the exact solution results from modifying the phase (4-4) to

texact 2- tanh-' R 2 ) (4-5)

where
a

(I -a 2 / 4w 2)'/ 2 "

.....--. . . . .. . . . .-- i ..-. . .
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FIGURE 4.1 RAY PATHS FOR THE LINEAR SOUND SPEED PROFILE C = az. TInS UPWARDLY

REFRACTING PROFILE IS NOTED FOR ITS CIRCULAR RAY ARCS.

The classical rays satisfy the first order path equation

dr
d- = Vray

2w(R 2VRj - R, VR2 )
a(R -RI)

Its solutions are the circular arcs noted earlier. But the exact rays satisfy

dr

dor
2w(R 2VHR - RIVR 2)

- -

which has the same circular arcs as its solutions. The exact rays, and the amplitudes
associated with them, are exactly the same as their classical counterparts. However,
the phase of an exact ray lags that of the classical ray.

D. A SMOOTH CAUSTIC SYSTEM

Exact ray analysis of the two preceding cases produced results which were little
different from, or not at all different from, the classical ray theory results. If this
always occurred then exact ray theory would be, at most, a perturbative correction
to classical ray theory. We now treat a more typical problen, henceforth called the
Kormilitsin problem after the original investigator, where the classical and exact ray
diagrams are very different. The case k2 = koz/zo, depicted in Fig. 4.2 along with
the corresponding sound speed profile, is notable in that the classical ray diagraim

4 - -- . . . .. . -- : :, : - .".' . - . . . , ; . -4 . . . " . -' , T. -:
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exhibits a single smooth convex caustic and so serves as a canonical problem in the
analysis of the field near a caustic.

k~ Co

0c k 2

z0

Z

z z

(a) (b)

FIGURE 4.2 THE KORMILITSIN PROFILE. THE MONOTONIC DECREASE IN SOUND SPEED

WITH DEPTH CAUSES DOWNWARD REFRACTION OF BOTH CLASSICAL AND EXACT RAY PATHS.

(a) V = k 2(z/zo)11 2 . (b) c = cO(zO/z)I/2.

Kormilitsin[26] obtained an exact elementary solution to the Helmholtz equation
for a line source at zo; the corresponding solution for a point source is[27]

o1/2oo 1 d(@ =\2ri)Joexp iko -(r + z- .) 2) + (z + Zo) (3/2--,1-
~2ri) ex k 4 96

where k0 = k(zo). Yet, for our purposes, a good approximation which lends itself
readily to computation is preferable to a computationally resistant exact solution.
Ludwig[28] and Kravtsov[29] independently developed a uniform asymptotic approx-
imation specifically to compute the field near a simple caustic; it is therefore the
method of choice for this problem. In deference to the fact that the uniform asymp- I
totic expansion is an approximation, the rays generated from it will be referred to as
frequency dependent rays rather than exact rays.

The development of several wave theoretical corrections to ray theory was mo-
tivated by a desire to retain the conceptual and computational advantages of ray
theory while obtaining improved or corrected predictions where the ray theory ap-
proximation fails. Ludwig's uniform asymptotic approximation is an example of
such a correction formula. Beam displacements, discussed in Sec. IV.H, are another.

. . . . . . . . . . . . ., - . . .
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These correction formulas typically make explicit use of classical eigenray path infor-
mation already computed by ray models. Ludwig's formula makes use of classical ray
amplitudes and phases and is easier to understand and interpret if the ray analysis
is already completed. The introduction of Ludwig's formula is therefore postponed
until after the classical ray analysis of the Kormilitsin profile problem which follows.

1. Classical ray analysis of the Kormilitsin profile

The classical ray analysis of the Kormilitsin profile begins with the deter-
mination of the ray trajectories. Once the ray paths are known the ray theoretical
acoustic field amplitude and phase along a ray are readily found. It then remains
to determine the rays which connect source and observation point; these are the
eigenrays.

a. Ray trajectories

We obtain the classical ray paths in a range invariant medium by convert-
ing Snell's law,

k2 cos 2 O = k02 cos 2 00,

into a differential equation whose solution reduces to quadrature. Here, 0 is the ray
path angle measured with respect to the horizontal. Snell's law is rendered as

t 0ko cos Oo (4-6)
cot - (k2(z) - k2 cos 2 O0)i/2 (-

with the aid of trigonometric identities. Since 0 is the ray path angle (Oo is the path
angle at the source, or "launch angle"), the derivative of the ray path range with
respect to depth is given by dr/dz = cot 0. Equation (4-6) may therefore be regarded
as a first order differential equation. Moreover, the right hand side of Eq. (4-6) is a
function of z only; hence Eq. (4-6) may be integrated at once to yield

JZ ko Cos 00kgos 0  z' (-7)= J~(k 2 (z') - k~cos 2Oo)1/ 2

Setting k2 = az in Eq. (4-7) and integrating, we find

r 1/2(ZI / 2 si  Z1/2.
r = 2zo sin 0 sin 0o) cos 0o.

Inverted, this is

z = zo + r tan 0o + r2 /(4zo cos2 00). (4-8)

Thus the ray paths shown in Fig. 4.3 are parabolic arcs.

• * , , - " "" ' III " i =I - II ' ' z u . ..
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b. Amplitude

For a point source on the z axis in a range invariant medium, the classical
ray amplitude is obtained from

A2 = 1/r1¢1, (4-9)

where C is the derivative of the ray path depth with respect to launch angle at
constant range. For the Kormilitsin profile this is

8-

= rsec20o l+ rztanOo . (4-10)

From Eq. (4-10) and the ray path equation (4-8), the surface ( = 0 is
found to be

2r = 4zoze.-

The locus of points (re, zc) defines a parabolic surface which forms an envelope to the
rays and separates the region containing rays (the insonified region) from the region
devoid of rays (the shadow zone), as shown in Fig. 4.3. Such surfaces are called
caustics because of the unusually intense acoustic fields which develop along them at
high frequencies. The classical ray amplitude is singular on a caustic.

E

- 1000
CL

2000
0 1 2 3

Range (kin)

FIGURE 4.3 CLASSICAL RAY DIAGRAM FOR THE KoRMILITSIN PROFILE. THE PARAHOLIC RAY

PATHS (SOLID CURVES) ALl, EVENTUALLY GRAZE THE CAUSTIC (DASHED CURVE), WHICH IS ALSO

PARABOLIC.

k
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c. Phase

The phase in the ray theory approximation is given by the path integral

0= j k ds',

or
or = j k[1 + (dzldr')21' 1 dr'

in cylindrical coordinates. Using k = az and Eq. (4-6), the phase integral becomeso (aT )1o*I
-- sec O0 z (r') dr'.

Integration of the ray path equation (4-8) then gives

4) = kor sec00 I + -L tan 00 + I ( r sec 2 
.0 (4-11)

d. Eigenrays

Since sec 2 0o = 1 + tan2 00, Eq. (4-8) is seen to be quadratic in tan 00 as
well as r. The two roots of Eq. (4-8) for a point (r, z) yield the launch angles ol" the
two eigenrays, or rays which connect the source at (ro, zo) to the point (r, z):

tan = [± ( z -) 1] (4-12)

The eigenray launched at 00 grazes the caustic before reaching the observation point,
while the eigenray launched at 00+ passes through the observation point before grazing
the caustic. Henceforth, all ray path parameters pertaining to the eigenray which
grazes the caustic before reaching the observation point will bear the superscript 1,
while path parameters of the second eigenray will carry the subscript 2.

Thus the acoustic field in the insonified region is given in the ray theory
approximation by the coherent sum of the pressure contributions of the two eigenrays:

%pray " Ale'- + Ase i
0

2 ,

where the amplitudes A' are given by Eqs. (4-9) and (4-10) and the phases 40 are
given by Eq. (4-11). The launch angles of the eigenrays are obtained from Eq. (4-12).

2. Ludwig's uniform asymptotic approximation

Having obtained the classical ray theoretical solution to the Kormilitsin prob-
lem, we are now prepared to introduce Ludwig's formula. At lowest order in 11w,
Ludwig's approximate solution to the lelmholtz equation is

=- 2,rl 2 e-iw14eie(r)[g+(r) Ai(-[(r)) + ig-(r) Ai'(-(r))], (4-13)
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where

=24( -02)]/3, E (#' + 02), g = "*/(A' ± A 2 ). (4-14)

Notice the use of the classical eigenray amplitudes and phases in Eqs. (4-14).
The Airy function Ai is a solution to Airy's differential equation[30]

Ai"(x) = x Ai(x).

It is oscillatory for x < 0 and decays exponentially for x > 0.
The gradient of the acoustic field is needed in order to trace frequency de-

pendent rays. After calculating the gradients of Eqs. (4-13) and (4-14), we get

V% Ai(-t)rl + Ai'(-()r 2

-' = g+ Ai(- ) + ig- Ai(-)'(

where

r, = ig+VO + Vg+ + itg-V ,

12 = -g-VO + iV9- - g+Vt,

and

= /2 (V - 6),

Ve = (VO' + V" 2 ), (4-16)

Vg" += ±419 t  + 1 ,1 / 4(-VA1  VA2).

Before computing the gradients of the classical ray quantities appearing in
Eqs. (4-16), it proves convenient to define the following variables:

l= z/zo, m = r/2zo, n2 = (1 + m tan o) 2.

Then the ray path equation may be written compactly as
M 2s + n 2

the eigenray amplitudes are

A'2 2zo[n(1 + 1 2n)]1/2'

and the phases are
= jkozo(1 +T n)(1 + 1 ±2)/2.

The gradients of the eigenray amplitudes and phases appearing in Eq. (4-16) take
the forms

VA = = (A')'[em(1 + 1 + 4n) - e,(1 + 1 4n + 2n2)] (4-17)
2 n 2

and
(1 +2 [e,m + e-, - n)]. (4-18)(I + I:1n
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3. Frequency dependent ray analysis of a caustic

With Eqs. (4-15) - (4-18) in hand for VTI/I, a frequency dependent ray dia-
gram is constructed by numerically solving the ray path equation dr/du = Im(VT/tp)
for various launch angles, using mathematical software library routines to compute Ai
and Ai'. These routines must be capable of computing Airy functions of complex ar-
gument if the shadow zone is to be treated.

Figure 4.4 shows the frequency dependent ray diagrams for source frequen-
cies of 5 Hz and 50 Hz, with the source located 1000 m below the surface and a sound
speed at the source of 1500 m/s. These frequency dependent rays obviously differ
starkly from their classical counterparts shown in Fig. 4.3. The frequency dependent
ray diagrams can be divided roughly into four zones according to the behavior of the
rays found within them. Near the source the rays form the radial lines characteristic
of spherical spreading, as discussed in Sec. IV.B. In the insonified region far from the
source but well inside the caustic, the frequency dependent rays begin to undulate.
As the rays approach the caustic, the undulations damp out and the rays bunch to-
gether, running parallel to each other and almost parallel to the caustic. The greatest
constriction of the ray bundles is found somewhat inside the caustic. Eventually, the
rays cross the caustic and intrude into the shadow zone, where they begin to spread
out. And, in sharp contrast to the classical rays, these rays never cross. In fact they
fill all of space, so that for every observation point, even in the shadow zone, there
is exactly one eigenray.

The details of these strange behaviors are sensitive to the source frequency.
The amplitudes of the undulations diminish with increasing frequency, but the un-
dulations become more rapid, giving the 50Hz rays a "jittery" appearance. Even
though they were launched at the same angles as the 5 Hz rays (from -85' to +850
in 50 increments), the 50 Hz rays are much more concentrated near the caustic and
reach their greatest concentration nearer the caustic. Nor do they venture nearly as
far out into the shadow zone as the 5 Hz rays.

The frequency dependent ray diagrams can be used to explain the behav-
ior of propagation loss curves. Horizontal reference lines are drawn across both
ray diagrams in Fig. 4.4 at the 1200 m depth level. Figure 4.5 shows the propa-
gation loss curves at this depth for both frequencies, computed by Ludwig's uni-
form asymptotic approximation (solid curves) and by classical ray theory (dasbed
curves). (The propagation loss curves plotted here were computed using the for-
mula PL = -10 logl 0[%P*"].) The ray theory propagation loss curve is extended into
the shadow zone by a slight modification of classical ray theory to be described later.
The ray theory results agree very closely with the uniform asymptotic approximation
except in the vicinity of the caustic.

The separation between the rays as they cross the reference 'ine is a measure of
the spreading of the rays and, hence, the intensity of the acoustic field. Comparing
the 5 Ilz ray diagram with the corresponding propagation loss curve, we see that
wherever the undulations of a pair of rays causes them to draw apart as they cross

'*1
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FIGURE 4.4 FREQUENCY DEPENDENT RAY DIAGRAM FOR THE KORMILITSIN PROFILE. (a) AT

5H[z THE RAYS UNDULATE GENTLY AND READILY INTRUDE INTO THE SHADOW ZONE. (b) AT
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the reference line there is a dip in the field intensity over the corresponding range
interval; similarly, the intensity is greatest where the ray pair draws together. The
undulations vanish as the reference line nears the caustic; the rays become most
concentrated just inside the caustic and then begin to spread out as the reference
line passes through the caustic and into the shadow zone. Likewise, the intensity
reaches its maximum at the point of maximum concentration of the rays and then
decays monotonically as the range increases to and beyond the range of the caustic.

The 50 Hz ray diagrams and propagation loss curves possess the same general
features as those for 5 Hz but differ in the details. The rapid undulations of the rays
correspond to the rapid oscillations in the field intensity. The heavier concentration
of rays nearer the caustic and the lesser degree of intrusion into the shadow zone co-
incides with the peak intensity occurring nearer the caustic and the rapid exponential
decay of the field in the shadow zone.

The propagation loss curves are interesting in their own right and deserve a
few remarks. Comparison of ray theory with uniform asymptotic predictions confirms
the maxim that ray theory remains valid in the insonified region up to the last zone of
constructive interference just inside the caustic. The acoustic field intensity reaches
a local maximum in this zone and then begins to decay. The intensity on the caustic
itself is actually several decibels below the local maximum.

But notice that the "classical" ray theory propagation loss curve continues
into the shadow zone even though the classical ray diagram of Fig. 4.3 clearly shows
the rays confined to the insonified region. This portion of the propagation loss curve
was generated using the complex ray theory of White and Pedersen.[31] We had
assumed until now that only real-valued eigenray launch angles and ray path coor-
dinates are admissible. But the ray path equation (4-8) is quadratic in tan 0o and
yields complex-valued eigenray launch angles for observation points in the shadow
zone. The path parameters of rays with complex launch angles take on complex
values. Ludwig's asymptotic formula (4-13) remains valid in the shadow zone and
makes explicit use of the complex amplitudes and phases of the complex eigenrays.
Following White and Pedersen, we compute the field in the shadow zone by retaining
the complex eigenray labeled 2, but discard the eigenray labeled 1 because it gives
rise to a nonphysical exponentially growing field. In other words T = Aeid 1 + A2e'2
in the insonified region, but I = A 2 e i

'2 in the shadow zone.

E. REMARKS ON THE NATURE OF EXACT RAY THEORY

Unlike the first two cases examined in this chapter, the frequency dependent
rays for the Kormilitsin profile are irreconcilably different from their classical coun-
terparts; yet both kinds of rays are purported to represent the paths of energy propa-
gation. It seems appropriate to try to resolve the paradox before proceeding to more
demonstrations of exact ray theory.

The solution to the dilemma lies in the nature of classical ray theory and the
ray theory approximation. Classical ray theory has been used for many decades to
study wave propagation and researchers have thereby gained a great deal of expe-

-~ - -- ~----.-<--.~--~-----.-..-~...,.> .
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rience and intuition which guides their expectations of the behavior of rays. It is
therefore disconcerting to many people to be confronted with exact ray diagrams
which systematically violate their expectations of what ray diagrams should look
like. It is tempting to dismiss these curves as being something other than rays (and,
to be sure, they are indeed not classical rays). But, although it is certainly correct
to claim, for example, that these paths are the orthogonal trajectories of the solution
to the Helmholtz equation, this assertion does not serve to distinguish these paths as
something other than rays. These are precisely the paths which result from avoiding
the approximation invoked in the Sommerfeld derivation of the classical ray path
equation; they form, now with perfect fidelity, the energy flux tubes which are the
essential feature of a ray theory. In short, these paths are rays.

Another tempting resolution of the paradox, also incorrect, is to suppose that
if exact rays were constructed at high enough frequencies then they would come
to resemble classical rays, because classical ray theory is a high frequency approxi-
mation. But this expectation will usually be frustrated, if for no other reason than
because exact ray diagrams never exhibit multipathing no matter how high the source
frequency, whereas multipathing is a characteristic feature of most classical ray di-
agrams. Classical ray theory is indeed a high frequency asymptotic approximation,
but the asymptotic expansion is nonuniform in most cases, and the nonuniformity
manifests in the vicinity of caustics. Caustics are an inevitable consequence of mul-
tipathing; if the ray paths cross at all then there will usually be a limiting surface
where the rays cross tangentially. Such a surface is, of course, a caustic, and the dif-
ferential ray tube cross sectional areas vanish on the caustic. The transport equation
then predicts nonphysical singular acoustic fields on the caustic.

When the classical ray path equation is derived by the Sommerfeld development
rather than as a high frequency approximation, one makes the ray theory assumption
that V2A/A < k2 . But this assumption usually turns out to be much more than a
perturbative approximation; the invocation of the ray theory approximation changes
the resulting rays from exact rays to classical rays which may behave quite differently.

Yet classical ray theory has been used to solve the Helmholtz equation for many
years and with considerable success. If further proof were needed, the propagation
loss curves computed for the Kormilitsin profile using classical ray theory agree ex-
tremely well with those computed by Ludwig's uniform asymptotic approximation,
except near the caustic. Classical ray theory was clearly not "wrong" in that case,
so why were the classical rays so uncompromisingly different from the frequency de-
pendent rays? In particular, why is the phenomenon of multipathing, so familiar in
classical ray diagrams, absent from exact ray diagrams?

In order to solve the multipathing conundrum, we revisit the Kormilitsin prob-
lem, but now we consider a quiescent medium disturbed by a point source which is
suddenly activated. The reader will recall from the discussion in Sec. III.D.1 that
the leading edge of the resulting disturbance propagates according to the predictions
of classical ray theory. Specifically, a listener in the insonified region will note two
distinct arrivals at times and intensities predicted by ray theory, the first arrival be-

7 %
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ing from that portion of the surface formed by the propagating discontinuity which
encountered the caustic before sweeping past the listener. The predictions of classical
ray theory are also in accord with common experience of multipathing in the form of
echoes. Ray theory is unsurpassed at tracking propagating discontinuities.

Multipathing, whether due to reflection or refraction, is a quintessentially broad-
band phenomenon. But a listener exposed to a continuous wave (cw) source hears
only a pure tone; there is no sensation of distinct arrivals-no multipathing. Whereas
classical ray theory describes the broadband phenomenology to which it is better
suited, exact ray theory describes cw phenomenology, and the two are simply differ-
ent.

One can reconstruct the acoustic disturbance created by a broadband source by
Fourier synthesis of the acoustic fields generated by cw sources, each radiating at
a different frequency. The acoustic fields of each cw source are best represented by
exact rays, while the broadband disturbance is best represented by classical rays.
When one applies classical ray theory to the Helmholtz equation, one presses into
service the solution to a broadband problem in order to solve a cw problem. This is
permissible-at the cost of failures of the theory near caustics, as is well understood.
It is less well understood that classical ray theory comes freighted with the conceptual
baggage of broadband propagation. Ironically, much of the conceptual framework
and many intuitive notions of the behavior of cw fields are based on experience with
classical ray theory.

F. PROPAGATION IN A WAVEGUIDE

Next we treat the case where k2(z) is taken to be the quadratic function
k2 _k[ (I z/zo) 2I. (4-19)

Thus k has a maximum value of k. at z = z., and vanishes at z - 0 and z = 2z., as
shown in Fig. 4.6(a). Figure 4.6(b) shows that the corresponding sound speed profile
c(z) = w/k(z) has a minimum value of c. at the axis depth z. and increases without
bound near the asymptotes at z = 0 and z = 2 z.. Sound tends to refract away from
regions of high sound speed and toward regions of low speed. This medium therefore
acts as a waveguide even though it lacks true boundaries, turning both classical and
exact rays away from the asymptotes and steering the acoustic energy towards the
sound channel axis. The waveguide thus formed turns out to be the acoustic analog of
the quantum harmonic oscillator and henceforth will be called the harmonic oscillator
waveguide.

1. Classical ray analysis of the harmonic oscillator waveguide

The classical ray paths may be determined, as in the case of the Kormilitsin
problem, by integrating Snell's formula:

r z kocos 00 dz,"
h= [k2(z,) - COS 2 00112

i : -. . . . . . . . . . . .-:' ..... .. . . .. . .. . . . * i- .. ... . .. .
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Quadrature is simplified when the source is located on the axis. Not surprisingly, III
view of the nature of the waveguide. the ray paths turn out to be sinusoidal:

z =z.+ z.sin 0sin Z, os g

The rate of change of ray path depth with respect to launch angle is

ago
(., Co 00 s) + rtan2 oo(zcs)

Caustics are located where (=0. For a given launch angle Oo. the range-- ?rC(Oo) at
which the ray grazes the caustic turn out to satisfy the nonlinear equation

tan(r,/ .,,cos 00) - tn

r/ Cos 0

while the corresponding depths Z,(r,.00) satisfy the ray path equation

Z- = 0 + Z, sin 0o sin ( ~ 0

2.Normal mode representation of the field in a waveguide

Waveguide problems can often be solved conveniently using normal m~odes (a
brief review of the methIod follows), althloughi the normal modes and eigenvalues must
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usually be determined numerically. The profile (4-19) selected for this example is one
of very few problems in which the normal modes and eigenvalues can be expressed
analytically and computed easily.

The Green function *G(r; ro) satisfies the inhomogeneous Helmholtz equation

V 2'IG + k2 %'G = -6(r - ro).

In cylindrical coordinates this is

[18a '8 2 182 1
-+ --2 802 = +-6(r-ro)(z-zo)6(0 - o). (4-20)

Because the source is located on the z axis and the medium is horizontally strati-
fied, the acoustic field is azimuthally symmetrical and derivatives with respect to €
consequently vanish. The inhomogeneous Helmholtz equation (4-20) becomes

02*P_G 1 a 02jpG %G=-
or-O + z + k2  = -16(r)(z - zo)6(0). (4-21)

i~r2 'r Zr+ r

Integration of Eq. (4-21) with respect to 4 from 0 to 27r produces the desired form
of the inhomogeneous Helmholtz equation:

2- +  + a + k2'/G = 6(r)b(z - zo). (4-22)
r Or 9z 2  27rr

Since the homogeneous Helmholtz equation corresponding to Eq. (4-22) is
separable, it is convenient to express the solution to the inhomogeneous Helmholtz
equation in terms of the solutions to the separated depth and radial equations. It
can be shown that the Green function for Eq. (4-22) is given by (see Boyles,[2]
pp. 163-177)

0
*G(r, z;zo) = - ,, (zo)ua (z) H,()(k, r). (4-23)

4 n=O

The radial function H), the function of the first kind, is a solution of a
Bessel equation which may be written in the form

d2  d
r -Ro(cr) + rRo(r) + ,2 R o(Kr) = 0.

dr2  dr

H00)(Kr) is that solution to the Bessel equation which is singular at r = 0 and which
is consistent with outgoing waves and an acoustic field with time dependence e-
that is, it satisfies the Sommerfeld radiation condition

r1/2 (d141)) - ik,, Hi)(Kr) 0.
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The normal modes u.(z) are the eigenfunctions of the depth-separated Helm-
holtz equation

d22nd-- + (k2 - k) = 0, (4-24)

and the k. are the corresponding eigenvalues. The normal modes satisfy the or-
thonormality condition

j-uM(z)un(z)dz = 6,,,,

and boundary or radiation conditions imposed on * and Of/Oz at horizontal bound-
ary surfaces.

In the case of the harmonic oscillator waveguide, the normal modes are ex-
pressible in terms of Hermite polynomials[30]:

U(z) = N,-e/22Hn(X),

x = k..'2 Z 1 2 (z - Z.),
N. = kl/4z,-1/47r-1/42-n /2(,!) - 1/ 2 ,

and the eigenvalues are equally spaced in increments of 2 k./za:

k= 2 . - (2n + 1)k./lz.. (4-25)

The Hermite polynomials Hn (not to be confused with Hankel functions, such as H.M)

satisfy the differential equation

HZ''(x) - 2xH:(z) + 2nH,(x) = 0,

and the normalization condition

C 2 [Hn(x)]2 dx = 2"r'12n!.

They are easily computed, along with their derivatives, using the recursion relations

H,(x) = 2xH_,(z) - 2(n- 1)Hn- 2(x),

Ho(x) = 1,

H1 (x) = 2x,

and the differentiation formula

H,(x) = 2nH _(x). (4-26)

One of the properties of a waveguide is that not all modes propagate freely
within it; beyond some mode cutoff number n, the modes are damped exponentially
as they travel down the waveguide. We exploit this property to terminate the normal
mode summation (4-23). For the harmonic oscillator waveguide, mode cutoff occurs
at

nc - (k.z. - 1)J. (4-27)

?-°: . ::" : - - : , : : , : ': i : , : i : ,: :,:: y " : • : : : : , / " - ; :: - : ": ?'., - -;:
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The eigenvalues are negative for modes with n > n,, as one may confirm by inspection
of the dispersion relation (4-25). The argument of the Hankel function, knr, is
consequently imaginary for modes above cutoff. For large argument w, the Hankel
function has the asymptotic form

H(1) (w) 7e

hence, for a purely imaginary argument w = IX,

Ho')(ix) ,, -i -'7e -

Modes above cutoff are thus exponentially damped and do not propagate very far
down the waveguide. One may therefore truncate the mode summation at cutoff,
provided the calculations are restricted to ranges beyond the effective propagation
distance of the first damped mode.

We are not quite ready to trace rays; we still need VT. The gradient of the
mode sum (4-23) for IT is

0

oo]u,,(zo)[e~u',(z) H(')(k,,r) -e,k,,u,,(z) H(')(k,,r)].

0
(4-28)

Using Eq. (4-26) for the derivative of a Hermite polynomial, we obtain

ut<(z) = /2-/2a-a/2[2nH-(x) - xHn(x)]. (4-29)

With Eq. (4-23) for *G, and Eqs. (4-28) and (4-29) for VIG, the ray trace proceeds
by solving dr/da = Im(VT/') numerically.

3. Exact ray analysis of a refractive waveguide

In this example we take the axis depth z. to be 500 m and the sound speed
on the axis, c., to be 1500 m/s. For a source frequency of 3Hz, mode cutoff occurs
at n, =7r - 1/2J = 2 by Eq. (4-27); the n = 2 mode propagates freely while
the n = 3 mode attenuates exponentially with range. The low frequency and corre-
spondingly low mode cutoff number ensure that the acoustic field will have simple
behavior, and that any instabilities in the Hermite polynomial recursion relation will
not have an opportunity to cause an accumulation of errors that might compromise
the accuracy of the field calculation.

Figure 4.7 compares classical rays with exact rays for a source located on
the sound channel axis (z0 = za = 500 m). Since modes above cutoff may not be

-..... . . . . . ... .-. -" " : : = i' , : :
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dropped from the mode summation until they have traveled far enough down the
waveguide to damp out, exact ray traces must be confined to regions far enough
from the source that the mode summation can be conveniently truncated with an
acceptable truncation error. The exact ray traces depicted in Fig. 4.7(b) commence
1 km downrange from the source. The launch angles of these rays are not known
and cannot readily be identified with their classical counterparts of Fig. 4.7(a); the
ability to initiate the exact ray trace away from the source, as discussed in Sec. IV.A,
is indispensible here.

The classical and exact rays are once again uncompromisingly different. Just
as in the Kormilitsin problem of Sec. IV.D, the exact rays do not cross and form
caustics, although they do concentrate in regions of high intensity. The classical rays
do cross systematically and thus form an infinite series of cusped caustics, as shown
in Fig. 4.7(a). The regions of greatest constriction of the exact ray bundles lie on
tile sound channel axis, but do not always coincide with the cusps of the classical ray
caustics, where the acoustic field is most intense at high frequencies.

4. Phase velocity

The complex velocity potential V = Ae'i - i-' is explicitly time dependent.
The phase speed cph is defined to be the rate ds/dt at which a point must advance
along a ray path in order to keep the phase of Wo constant at that point, where s is
distance along the ray path. By requiring that the time derivative of 41s(t)] - wt
vanish and by using d/ds = K, the phase speed is determined to be

ch= w1K. (4-30)

In the ray theory approximation k . K,

cph w1/k = c.

In view of Eq. (4-30), the exact ray path equation

d Kd =VK

may be rewritten as

( 1L )d 1 (4-31)

Conventional ray trace programs are based on the assumption that the sound speed
and phase speed are synonymous; they solve Eq. (4-31) by assuming that cvih = c.
But even a conventional ray trace program would nevertheless trace out the exact
ray paths if it were supplied the true phase speed (4-30) in place of the sound speed.

Figure 4.8 shows the level contours of the phase speed in the harmonic oscil-
lator waveguide for different source depths and frequencies. The phase speeds were
calculated using Cph = w1K, with K obtained from Eq. (4-3). Phase speed contours
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for the 3 Hz source at 500 m are shown in Fig. 4.8(a). Notice that the phase speed
is markedly range dependent even though the sound speed is range invariant. The
phase speed contours shift when the frequency is raised slightly from 3.0 Hz to 3.1 Hz
(Fig. 4.8[b]), and when the source depth is moved down slightly from 500 m to 525 m
(Fig. 4.8[c]).

In general, K and the phase speed also depend on the source configuration
and on the boundaries or radiation conditions. The frequency dependence of the
phase speed is concomitant with the frequency dependence of the exact ray paths
and with the dispersion observed in inhomogeneous media, even in the absence of
boundaries.

W.- conclude the discussion of the harmonic oscillator waveguide with a fur-
ther remark on the origin of its name. Hermite polynomials appear in eigenfunction
solutions to the Schr6dinger equation describing a quantum particle trapped in a
conservative potential where the restoring force on the particle is proportional to
its displacement from equilibrium (almost all quantum mechanics textbooks discuss
this famous problem). In the classical limit, the particle undergoes time harmonic
oscillations about its equilibrium position. The author chose the name "harmonic
oscillator" waveguide to describe the waveguide which is the acoustic analog of the
quantum harmonic oscillator.

G. FRAUNHOFER DIFFRACTION

We now take up the problem of a circular piston of radius a mounted flush in an
infinite plane baffle. The farfield acoustic radiation exhibits Fraunhofer diffraction
patterns.

1. Radiation from a circular piston in a baffle

In an unbounded homogeneous medium, the acoustic field at r, due to a time
harmonic point source at r0 , is

IG(r; ro) = eir _rol 
(4-32)

Ir - ol'

To a good approximation, each elementary surface on the piston face radiates accord-
ing to Eq. (4-32), so that the total acoustic field is given by an integration over the
surface of the piston (we are exploiting the Huygens-Fresnel principle). The integra-
tion is most readily performed with the system configuration and coordinate system
shown in Fig. 4.9. The baffle and the surface of the piston lie in the xy plane with
the center of the piston at the origin. The piston radiates upward into the z > 0
region.

The integration over the piston surface is accomplished by resort to a farfield
approximation. The diffraction patterns manifest only in the farfield, where 7- >> a.
The details of the calculation are given in many references on optics and acoustics

* 
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FIGURE 4.9 THE PISTON IN A BAFFLE. A CIRCULAR PISTON MOUNTED IN A PLANE BAFFLE

CREATES FRAUNHOFER DIFFRACTION PATTERNS.

(see Kinsler and Frey[32] for an elementary discussion). The result is

2ei k ' 2 J, (ka sin 0)-
T(r) = Q era2 r kasin (4-33)r ka sin 0

for the acoustic field far from the piston.
The directivity factor 2 JI(kasin O)/(kasinO) accounts for the Fraunhofer

diffraction zones. The function 2 J1 (x)/x is oscillatory, with an amplitude that falls
off as X- 3 / 2 for large x. As expected, a beam of sound appears directly in front of
the piston, where 0 = 0 and 2 J1 (ka sin 0)/(ka sin 0) attains its maximum value of
unity. But if the piston is large compared to a wavelength (ka > 1), then conical
zones of enhanced intensity, due to diffraction, also form at angles corresponding to
the extrema of 2 Ji(ka sin 0)/(ka sin 0), interspersed with shadow zones correspond-
ing to the zeros of J(kasin0). On the other hand, if the piston is on the order of a .

wavelength across (ka - 1), then no shadow zones or secondary maxima appear. If
the piston is small (ka < 1), then the primary beam is greatly dispersed, radiating
with nearly uniform intensity in all directions from the piston.

When secondary maxima are present they are far less intense than the pri-
mary. At any fixed distance r from the piston, the peak intensity in the first diffrac- -

tion zone is 17.5dB below that of the central maximum; the peak intensity of the
second zone is 23.8 dB down.

2. Diffraction of exact rays

Upon taking the gradient of T (Eq. [4-33]), we discover that

-Z-= i- r r

which is the same result obtained in the case of the point source in an unbounded
hoinog.... ous medium (see Sec. IV.B). The reader will recall that, in that case, the ray
paths were radial lines originating at the origin. Here, our conclusions are restricted
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to the farfield, where the ray paths are once again found to be radial lines, with
retrograde projections back to the origin. (However, we do not know the paths the
rays followed through the nearfield to get to the farfield.)

The field amplitude, obtained from A 2 = T', is

A 27rQa 2 J(kasinO)
r kasinO)

which is to be compared with A = 1/r for the point source. Clearly these diffracted
radial rays do not all bear equal energy, as they did in the unbounded medium, but
have intensities appropriate to their positions in the diffraction pattern.

The piston problem illustrates several interesting properties of exact ray the-
ory. It demonstrates, as did the harmonic oscillator waveguide case, that fruitful
ray analysis can sometimes proceed even when there are large regions where the ray
paths cannot be computed. In exact ray theory, problem areas may sometimes be
"skipped over," whereas in classical ray theory, ray traces must usually proceed from
the source without interruption.

The piston problem involved a distributed source, an often problematical
situation for classical ray theory because it is not always clear how to initiate the
ray trace. In the exact ray theory analysis we simply stepped over the troublesome
nearfield and took advantage of knowledge of the farfield results.

The method of analysis of the piston problem is also applicable to the problem
of a plane wave normally incident on a circular hole in a baffle. If the hole is not so
small that ka < 1, then the acoustic field in the hole may be taken to be that of the
incident field (the Kirchhoff approximation) and the analysis proceeds as it did for
the piston problem. According to classical ray theory, the rays passing through the
hole do not diverge, but form a beam of parallel rays. The acoustic field is uniform
across this beam and vanishes abruptly at the edge of the beam. By contrast, exact
ray analysis accounts for diffraction by predicting diverging rays of variable intensity.

H. BEAM DISPLACEMENT AND REFLECTIONS FROM A BOUNDARY

Until recently most computer implementations of ray theory have treated acous-
tic interaction with the surface and bottom boundaries in a rather simplistic fashion,
letting the rays reflect in the specular direction and imposing a plane wave reflection
loss and phase shift, and possibly a frequency dependent rough scattering loss. This
approach works quite well when applied to a smooth ocean surface, because then
the surface is an almost perfect pressure release boundary; the rays reflect in the
specular direction with a 1800 phase shift and undiminished amplitude. (Attempts
to treat scattering from a rough sea surface have had mixed success.) The method
meets with indifferent to poor success when applied to bottom interaction. It is noto-
riously inadequate in shallow water, where bottom interacting energy can dominate
the propagation problem.

The lateral displacement of a bounded beam reflecting from an interface is a
well known phenomenon.J331 In 1981, Tindle and Bold[341 published their discovery
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that ray theory calculations could be made very accurate, even in shallow water, by
imposing a beam displacement and phase shift on bottom reflected rays, so that the
reflected ray emerged from the bottom somewhat displaced from its point of incidence
(see Fig. 4.10), and with an additional phase shift imposed.

* source

observation
point

bottom reflected
eigenray with
beam displacement

- Ar I

sediment layer
interface

FIGURE 4.10 BEAM DISPLACEMENT OF A BOTTOM REFLECTED RAY.

Implementation of beam displacement in a computer ray model is straightfor-
ward. The complex plane wave reflection coefficient V(9) is computed for a ray
incident on the bottom at grazing angle 0 in the usual fashion. But the point of
origin of the reflected ray is displaced from the point of incidence by a distance Ar
given by

1 8¢
Ar = kbsn0a0' (4-34)

where kb is the wave number in the water at the bottom interface, and is the phase
of V. There is also a beam displacement phase shift A4 b given by

A4 6 = kbAr cos 0

in addition to the bottom reflection phase shift directly attributable to V. Caustics
will usually be created by including beam displacements even if none were present
before, and these must be treated by uniform asymptotics. Curiously, the phase shift
accrued by a ray which grazes a beam displacement caustic is ir/2 (a phase lead)
instead of the familiar -7r/2 phase lag from encountering a conventional caustic.

All of these seemingly peculiar manipulations have been shown to be mathemat-
ically well justified.[33,35] Batorsky and Felsen[36] showed that beam displacements
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are inherent in the transformation from normal mode to ray theory representations
when a bottom is present. And there are compelling computational reasons for pre-
ferring a ray calculation to a normal mode calculation, even though the normal mode
result is slightly more accurate: ray theory models can easily treat broadband sources
and sloping bottoms. Even so, beam displacement seems to many to be an ad hoc
correction with several counterintuitive properties, and this has discouraged its use.

Heading the list of disquieting properties is the fact that a single beam-displaced
eigenray can emerge from the bottom and properly account for the bottom interaction
effects of an ocean bottom consisting of several partially reflecting sediment layer
interfaces. Experience with classical ray theory suggests that rays should split at
the interfaces to account for the partial reflection and transmission of energy, and
that this should result in a large, or even infinite number of eigenrays emerging from
the bottom. This notion of how the rays should behave persists even though this
model of bottom interaction produces poor predictions. Then again, the computer
modeler can elect to use a split-ray approach, but with beam displacements imposed
on every partially reflected ray,[37] although the split-ray approach complicates the
modeler's task. The reader has probably already begun to suspect that this single
eigenray/multiple eigenray quandary is another manifestation of the confounding of
cw and broadband phenomena.

1. Reflection from a boundary

If a point source is located above a rigid perfect reflector as shown in Fig. 4.11,
then the acoustic field is given by

IP(r, z; z0 ) = Psphere + lrefl, (4-35)

where
eikR eikRl

*./Phere R- -R-' L/el"- -- 
'

and
R2 = r 2 + (Z- zo) 2, R = r2 + (z + zO) 2

(the source strength has been dropped in Eq. [4-35]). Classical ray theory yields the
exact solution to the Helmholtz equation in this case, and the two classical eigenrays
are shown in Fig. 4.11. The direct path eigenray connects the source at (0, z0 ) with
the observation point at (r, z). The bottom reflected eigenray may be replaced by
an equivalent ray which connects the source image at (0, -z 0 ) with the observation
point.

If we proceed to trace the exact eigenray by solving dr/da = Im V'P/tp, as
we have in all the previous sections, the result is the wavy curve shown in Fig. 4.11.
(This exact eigenray, incidentally, was traced backwards from the observation point
to the source.) Two classical eigenrays are replaced by a single exact eigenray in the
usual fashion, but the result does not seem particularly illuminating.

A more fruitful approach is suggested by the representation of the total field
in Eq. (4-35) as a superposition of a spherical wave and a reflected wave field. Each

S
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FIGURE 4.11 REFLECTION FROM A RIGID BOUNDARY. THE CLASSICAL EIGENRAYS (SOLID

STRAIGHT LINE SEGMENTS) MAY BE REPLACED BY A SINGLE EXACT EIGENRAY (WAVY CURVE).

of the contributing wave fields can be represented separately by an exact eigenray.
Thus the exact eigenray representing *.ph,, is the usual straight line from source to
observation point. The exact ray representing Irefl connects the source image point
with the observation point; it is the equivalent of the bottom reflected ray of classical
ray theory. The exact and classical eigenrays coincide, of course, because classical
ray theory is exact in this case. The representation of the acoustic field by two terms,
each with its own exact ray representation, is the key to establishing the connection
between exact ray theory and beam displacement.

The phenomenon of beam displacement manifests itself only when the reflect-
ing boundary is not a perfect reflector. We will treat the simplest such case: that
of a point source in a homogeneous fluid half-space overlying another homogeneous
half-space. The total field is again written as the sum of a spherical wave field and
a reflected field, and *.ph,, is computed as before. To compute the reflected field
the spherical wave impinging on the interface is expanded in terms of plane waves
(the expansion takes the form of an integral over the grazing angles). The reflected

field is then obtained by computing the reflected plane wave corresponding to each
incident plane wave by application of a plane wave reflection coefficient. The contri-
butions of the reflected plane waves are integrated by a saddle point approximation.
The calculation is lengthy; fortunately, the details are supplied by Brekhovskikh,[33]
pp. 242-255, and we need only state the results:

eikRI

R,

ren =. . .
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Q = V(o) - iM(0, RI),
M = N(O)/kRi, (4-36)

N = [V"() -V'(0)tan 01,
tan 0 = (z + zo)/r,

which are valid for kR > 1 < kRl and for grazing angles 0 not closely approaching
the critical angle 0, below which total internal reflection occurs. Primes denote
differentiation with respect to the grazing angle 0 (Brekhovskikh works with the
angle of incidence, which accounts for the differences between the formulas in the
reference and those appearing here).

The logarithmic derivatives of tY required for ray tracing are

Sp, ./eoar _ QIOr )R,_l ,

tkrefl = Q R+(ikR1
(4-37)

aOl,/Oz _OQ/az OR,/z
refa - Q + (ikR, 1) R,

where

aQ/or = [irM - (z + zo)(V' - iN'/kRl)]/R',
cQ/Oz = [i(z + zo)M + r(V'- iN'kR,)]R,,

and

OR,/Or = r/R,

OR,/Oz = (z + zo)/R,.

Equations (4-36) and (4-37) are valid regardless of the complexity of the ocean
bottom.

In the case of the fluid half-space bottom, the plane wave reflection coeffi-
cient V(O) is given by

p= P sin# - p(n2 - cos2G)'(4
Pl sin 0 + p(n 2 - cos 2 0)1/2'

where p and c are the density and sound speed in the upper half-space, p, and c, are
the density and sound speed in the lower half-space, and n = c/c,. In this instance,

V is independent of frequency. The beam displacement, computed according to
Eq. (4-34), is zero unless the grazing angle is less than the critical angle, given by

COS 0 cr = n.

By letting m = Pu/P and defining

S7= msin, # = cosO ' = (n2 -cos 2 0)1/2'

7.7=
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the required derivatives of V and N are found to be

V, = /(1 - V) --7(1 + V)"

V a(1 - V) + -y"(1 + V) + 2(p + -f')V'

V, 3(1 - V) + -"(1 + V) -3(a - y")V' + 3(,6 + y')V"

NI ,,(V" -V"tan0 -V'sec 2 0 ),

where

It /2 - a 2 _ (m-Y) 2

7"= -7'(4 + 37"/t).

2. Frequency dependent ray representation of beam displacement

Since the calculation of 1Pf relies on a saddle point approximation the re-
suiting rays are not quite exact rays. Nor are they frequency dependent rays, since
the reflection coefficient V, given by Eq. (4-38), is frequency independent. Rather
than engage in a pointless search for a suitable qualifying adjective I shall simply
continue to call these exact rays.

Figure 4.12(a) shows a point source located 100 m above a plane interface,
and an observation point located 50 m above the interface and 450 m downrange
from the source. The fluid density ratio is pr/p = 1.25 and the sound speed ratio is
n = c/cl= 1500/1750. The solid straight line segments are the classical direct path
and bottom reflected eigenrays. The broken line is the bottom interacting eigenray
with beam displacement included (the beam displacement was computed according
to Eq. [4-34]).

Figure 4.12(b) shows the frequency dependent eigenray for T,n, which was
traced backwards from the observation point until it intersected the interface. The
classical eigenrays are drawn in for comparison. The frequency dependent eigenray
for the reflected field coincides almost exactly with that segment of the beam dis-
placed eigenray which connects the bottom with the observation point, even though
the methods used to compute the exact ray and the beam displaced ray are quite
different.

The homogeneous half-space bottom was chosen for the sake of simplicity, but
the substitution of a more complicated bottom would merely change the details. Once
the decision is made to represent the total field as a superposition of a waterborne field
and a bottom reflected field (and this is always permissible), then the waterborne and
reflected fields at an observation point can always be represented separately by their
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FIGURE 4.12 BEAM DISPLACEMENT. (a) THE SOLID STRAIGHT LINE SEGMENTS ARE THE CLAS-

SICAL EIGENRAYS. THE BROKEN LINE IS THE BOTTOM REFLECTED EIGENRAY WITH BEAM DIS-
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respective frequency dependent eigenrays. Moreover, there will always be exactly
one eigenray to account for bottom interaction in this representation no matter how
complicated the bottom and, in particular, no matter how many sediment layer
interfaces there are. And that eigenray will ordinarily exhibit a displacement.

On the other hand, it is also permissible to write the reflected field as a super-
position of reflected fields from each layer interface in the bottom. In that case, each
of these layers may be represented by its own frequency dependent eigenray, each with
its own displacement. Thus both approaches to implementing beam displacement in
a classical ray model are vindicated.

It is important to note that the displacement of the bottom reflected frequency
dependent eigenray appeared naturally; it was not necessary to introduce it, as is the
case in conventional ray tracing.

1. EXACT RAY THEORY AND MULTIPATHING

We saw in the previous section that frequency dependent ray diagrams could be
constructed for each term in the two-term representation of the field for a source above
a partially reflecting boundary. In the case examined, the field at an observation point
was given by the coherent addition of two frequency dependent eigenrays, one being
a direct path ray from the source to the observation point, and the other emerging
from the bottom (see Fig. 4.12[b]). Although the field could also be represented by
a single frequency dependent eigenray, as in Fig. 4.11, it proved more illuminating
to construct two frequency dependent eigenrays. By drawing both rays on the same
ray diagram we reintroduce a form of multipathing.

In general, if an expression for the acoustic field takes the form of a series, then
each term in the series may be represented by its own ray diagram. Such term-by-
term representations of the field can be illuminating, as we have just seen. If the
diagrams are c,mbi,,cd so that all of the rays appear on the same diagram, then the
rays will generally cross and a semblance of multipathing appears. But the fact that
a ray from one diagram might cross or graze a ray from another diagram should not
cause alarm that the transport equation is poised once again to predict singularities
at caustics. Each ray diagram is actually independent of all the others. No single
ray diagram will exhibit multipathing, and the transport equation must be applied
separately to each diagram.

When multipathing is introduced in this way the exact eigenrays have the peculiar
property that not all of them can be traced back to the original source. The example
of beam displacement examined in the last section showed an exact ray apparently
emerging from the bottom, but it is quite meaningless to inquire how the ray "got
there." The harmonic oscillator waveguide supplies another example. In that case,
the acoustic field was expressed as a normal mode summation. We can now see that
each term in that series would have its own exact ray rcpresentation and, in fact, the
behavior of those rays is easily discerned. The rays for each term in the series are
simply horizontal lines projecting from the z axis. The z axis acts as a line source
for these rays even though the actual source was a point. We find that K = k, for
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the nth term, where k2 is the eigenvalue for that term and mode.
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V. CONCLUSION

The computational convenience and physical insight provided by ray theory mod-
els have encouraged their use even under conditions where the approximation inherent
in the theory becomes a serious liability. In underwater acoustics, for example, ray
models are used increasingly in long range, low frequency propagation analysis, and in
shallow water propagation analysis. But in these environments, ray theory deficien-
cies in the treatment of caustics, bottom interaction, and weakly ducted propagation
detract from its usefulness. In an effort to retain the advantages of ray theory while
correcting its lapses, researchers have developed several wave theoretical corrections
to classical ray theory.

The author has been engaged for several years in applying ray theory to the Helm-
holtz equation which describes the acoustic field generated by a time harmonic source.
During the doctoral research which lead to this dissertation, I became intrigued by
the possibility that the ray theory approximation might be abolished altogether in
solutions to the Helmholtz equation. The idea was to recast the Helmholtz equation
in a ray theoretical formulation in which a geometrical energy conservation law (the
transport equation) would be obeyed exactly. The reformulation in fact turned out
to be very straightforward, but did not lead to a practical computational scheme for
solving the Helmholtz equation. What did emerge, however, was a practical com-
putational method for constructing exact ray diagrams from known solutions to the
Helmholtz equation. Thus, whenever a solution to the Helmholtz equation is avail-
able, whether by analytical or numerical methods, the solution may be represented
in the form of an exact ray diagram. The transport of energy within the flux tubes
formed by exact ray paths is rigorously conservative; the ratio of areas law, familiar
from classical ray theory, which governs intensity in infinitesimal ray bundles ceases
to be an approximation.

Yet, in a series of numerical experiments described in this dissertation, the exact
ray diagrams constructed for several known solutions to the Helmholtz equation are
utterly unlike the corresponding classical ray diagrams. This is so despite the fact
that classical ray theory makes quite accurate field predictions for most of these
cases, provided allowances are made for caustics and other known problematical
regions. Moreover, the differences are not reconciled at high frequencies, as might be
expected. The surprising fact is that, by expunging the ray theory approximation
altogether, the character of the ray paths is changed completely. Actually, several
principal features of exact ray diagrams had been anticipated long before methods
were invented for tracing exact rays, but that hardly abated the sense of surprise
upon eventual confirmation.

The lack of multipathing is the single feature which most distinguishes exact ray
diagrams from their classical counterparts. The explanation for this differcnce goes
directly to the nature of classical ray theory and the ray theory approximation. It is
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shown that classical ray theory is based on the phenomenology of propagating fronts
generated by pulsed sources, while exact ray theory is founded on the phenomenology
of time harmonic fields. When classical ray theory is applied, somewhat out of its
natural context, to the Helmholtz equation, it takes the form of a nonuniform high
frequency asymptotic approximation. The nonuniformity largely accounts for the
differences between classical and exact ray theory.

As to practical considerations, even though exact ray theory does not presently
offer any improved computational methods, it does provide a new method for display-
ing the acoustic field. If the new ray diagrams were merely minor perturbations of
the classical ray diagrams then they would be of little interest. But because exact ray
diagrams are usually profoundly different from classical diagrams, they can provide
insights offered by no other method of display. The computational method for tracing
exact rays lends itself to implementation in existing numerical propagation models.
Suitably modified models would be capable not only of predicting the amplitude and
phase of the acoustic field but also of tracing out its lines of propagation.

w.
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